Heme oxygenase-1 attenuates low-dose of deoxynivalenol-induced liver inflammation potentially associating with microbiota

  • 类型:
  • 作者:Zhao Peng, Yuxiao Liao, Liangkai Chen, Shuang Liu, Zhilei Shan, Andreas K. Nüssler, Ping Yao, Hong Yan, Liegang Liu, Wei Yang
  • 期刊:TOXICOLOGY AND APPLIED PHARMACOLOGY
  • 阅读原文

Deoxynivalenol (DON) is one of the most common mycotoxins which contaminate cereals and their by-products worldwide. Previous studies have stated toxic effects of DON on liver. Heme oxygenase-1 (HO-1) plays a potential role in protecting liver and maintaining gut microbiota homeostasis. Therefore, a study on the potential and basic interaction between DON, HO-1 and intestinal flora would be helpful for better understanding DON-induced hepatotoxicity. In the present study, male C57BL6/J mice were exposed to 25 μg/kg bw/day DON for 30 days. Compared with control group, liver lymphocytes accumulation and elevated ALT activity were observed in DON group, however, AST activity was not notably changed. Several genera, including Parabacteroides and Enterobacter, were significantly increased after DON administration while Lactobacillus, Odoribacter and Lachnospiracea incertae sedis were mostly reduced. The top distinct microbial pathways predicted by PICRUSt included signal transduction, metabolism and genetic information processing. Importantly, liver-specific knockdown of HO-1 caused more severe pathological alterations in liver after DON administration and overexpression of HO-1 protected against DON-induced liver inflammation. The gut microbiota and related microbial pathways were changed in different ways after gene-editing. In conclusion, low dose of DON triggered low-grade inflammation in liver and changes in gut microbiota. HO-1 could attenuate DON-induced inflammation in liver, where gut microbiota may play an important role. HO-1 also could be a potential protective factor between homeostasis of gut microbiota and DON-induced hepatotoxicity in animal models.

文章引用产品列表