Dedicator of Cytokinesis 2 (DOCK2) Silencing Protects Against Cerebral Ischemia/Reperfusion by Modulating Microglia Polarization via the Activation of the STAT6 Signaling Pathway

  • 类型:
  • 作者:Siwen Ding, Yuze Cao, Xiaoyu Lu, Huixue Zhang, Lin Cong, Tingting Yi, Mei Xu, Lihua Wang
  • 期刊:NEUROSCIENCE
  • 阅读原文

Cerebral ischemia/reperfusion is the major pathophysiological process in stroke and could lead to severe and permanent disability. The current study aimed to investigate the effects of dedicator of cytokinesis 2 (DOCK2) on cerebral ischemia/reperfusion-induced cerebral injury. We established a mouse middle cerebral artery occlusion (MCAO) model with suture-occluded method in vivo. Then, BV-2 cells were conducted to oxygen-glucose deprivation and re-oxygenation (OGD/R) in vitro. The results showed that DOCK2 was highly expressed in ischemic brain following MCAO and in BV-2 cells induced by OGD/R. DOCK2 depletion protected against MCAO-induced brain infarcts and neuron degeneration. DOCK2 downregulation improved long-term neurological function, which was assessed by the Morris water-maze test. Moreover, silencing of DOCK2 promoted M2 polarization (anti-inflammation) and repressed M1 polarization (pro-inflammation) of microglia both in vivo and in vitro. Subsequently, we found that the loss of DOCK2 upregulated the expression of p-STAT6. DOCK2 knockdown-induced microglial cell polarization towards M2 phenotype was partly abrogated by the STAT6 inhibitor AS1517499. In conclusion, DOCK2 downregulation protected against cerebral ischemia/reperfusion by modulating microglia polarization via the activation of the STAT6 signaling pathway.

文章引用产品列表