Parkinson's disease (PD) is the second most common neurodegenerative disease. Pathologically, PD is characterized by the formation of Lewy bodies (LBs) in the brain, which mainly comprises phosphorylated and aggregated α-synuclein (α-syn). The aberrant aggregation of α-syn is believed to play a key role in the pathogenesis of PD. While α-syn expression can be reduced by antisense oligonucleotides (ASOs), the challenge to deliver ASOs safely and effectively into the neurons remains unresolved. Here, we developed a safe and highly effective ASO delivery method by using exosomes. We first identified the ASO sequence that selectively reduced α-syn expression: ASO4. Exosome-mediated delivery of ASO4 (exo-ASO4) showed high cellular uptake and low toxicity in primary neuronal cultures. Exo-ASO4 also significantly attenuated α-syn aggregation induced by pre-formed α-syn fibrils in vitro. Exo-ASO4 intracerebroventricular injection into the brains of α-syn A53T mice, a transgenic model of PD, significantly decreased the expression of α-syn and attenuated its aggregation. Furthermore, exo-ASO4 ameliorated the degeneration of dopaminergic neurons in these mice. Finally, the α-syn A53T mice showed significantly improved locomotor functions after exo-ASO4 injection. Overall, this study demonstrates that exosome-mediated ASO4 delivery may be an effective treatment option for PD.
Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson's disease
- 期刊:NEUROBIOLOGY OF DISEASE
- 阅读原文