Background:Cholecystokinin (CCK) is implicated in the regulation of nociceptive sensitivity of primary afferent neurons. Nevertheless, the underlying cellular and molecular mechanisms remain unknown.
Methods:Using patch clamp recording, western blot analysis, immunofluorescent labelling, enzyme-linked immunosorbent assays, adenovirus-mediated shRNA knockdown and animal behaviour tests, we studied the effects of CCK-8 on the sensory neuronal excitability and peripheral pain sensitivity mediated by A-type K+ channels.
Results:CCK-8 reversibly and concentration-dependently decreased A-type K+ channel (IA) in small-sized dorsal root ganglion (DRG) neurons through the activation of CCK type B receptor (CCK-BR), while the sustained delayed rectifier K+ current was unaffected. The intracellular subunit of CCK-BR coimmunoprecipitated with Gαo. Blocking G-protein signaling with pertussis toxin or by the intracellular application of anti-Gβ antibody reversed the inhibitory effects of CCK-8. Antagonism of phosphatidylinositol 3-kinase (PI3K) but not of its common downstream target Akts abolished the CCK-BR-mediated IA response. CCK-8 application significantly activated JNK mitogen-activated protein kinase. Antagonism of either JNK or c-Src prevented the CCK-BR-mediated IA decrease, whereas c-Src inhibition attenuated the CCK-8-induced p-JNK activation. Application of CCK-8 enhanced the action potential firing rate of DRG neurons and elicited mechanical and thermal pain hypersensitivity in mice. These effects were mediated by CCK-BR and were occluded by IA blockade.
Conclusion:Our findings indicate that CCK-8 attenuated IA through CCK-BR that is coupled to the Gβγ-dependent PI3K and c-Src-mediated JNK pathways, thereby enhancing the sensory neuronal excitability in DRG neurons and peripheral pain sensitivity in mice.