Exosomes derived from mesenchymal stem cell (MSC) alleviate kidney damage through autophagy. This study determined whether MSCs relieve renal fibrosis and inhibit autophagy by exosome transfer of miRNA-122a. The gene expression involved in the mTOR signaling pathway and autophagy was assessed in TGF-β1-treated human renal tubular epithelial cells (HK-2) and unilateral ureteral obstruction (UUO) mice before and after MSC-derived exosomes and miRNA-122a mimic treatment. Small RNA (sRNA) next-generation sequencing was also performed on TGF-β1-treated HK-2 cells. MSC-derived exosomes relieve fibrosis caused by TGFβ in HK-2 via regulation of the mTOR signaling pathway and downstream autophagy. Furthermore, we found that MSC-derived exosomes mediate miRNA-122a to relieve renal fibrosis in HK-2 cells in response to TGF-β1 through the regulation of mTOR signaling and autophagy. In the UUO mouse model, miRNA-122a mimic-transfected MSC treatment and its combination with 3-MA both recapitulated the same results as the in vitro experiments, along with reduced expansion of renal tubule, interstitial expansion, and preservation of kidney architecture. The antifibrotic activity of MSC-derived exosomes after renal fibrosis occurs partially by autophagy suppression via excreted exosomes containing mainly miRNA-122a. These findings indicate that the export of miRNA-122a via MSC-derived exosomes represents a novel strategy to alleviate renal fibrosis.
文章引用产品列表
-
- EK981
- ELISA试剂盒
Human/Mouse TGF-β1 ELISA Kit 检测试剂盒(酶联免疫吸附法)
- ¥1,600.00 – ¥10,800.00