The dynamic changes in autophagy activity and its role in lung injury after deep hypothermic circulatory arrest

  • 类型:
  • 作者:Minjian Kong, Dongdong Wei, Xuebiao Li, Xian Zhu, Ze Hong, Ming Ni, Yifan Wang, Aiqiang Dong
  • 期刊:JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
  • 阅读原文

Deep hypothermic circulatory arrest (DHCA) can cause acute lung injury (ALI), and its pathogenesis mimics ischaemia/reperfusion (I/R) injury. Autophagy is also involved in lung I/R injury. The present study aimed to elucidate whether DHCA induces natural autophagy activation and its role in DHCA-mediated lung injury. Here, rats were randomly assigned to the Sham or DHCA group. The sham group (n = 5) only received anaesthesia and air intubation. DHCA group rats underwent cardiopulmonary bypass (CPB) followed by the DHCA procedure. The rats were then sacrificed at 3, 6 and 24 h after the DHCA procedure (n = 5) to measure lung injury and autophagy activity. Chloroquine (CQ) was delivered to evaluate autophagic flux. DHCA caused lung injury, which was prominent 3-6 h after DHCA, as confirmed by histological examination and inflammatory cytokine quantification. Lung injury subsided at 24 h. Autophagy was suppressed 3 h but was exaggerated at 6 h. At both time points, autophagic flux appeared uninterrupted. To further assess the role of autophagy in DHCA-mediated lung injury, the autophagy inducer rapamycin and its inhibitor 3-methyladenine (3-MA) were applied, and lung injury was reassessed. When rapamycin was administered at an early time point, lung injury worsened, whereas administration of 3-MA at a late time point ameliorated lung injury, indicating that autophagy contributed to lung injury after DHCA. Our study presents a time course of lung injury following DHCA. Autophagy showed adaptive yet protective suppression 3 h after DHCA, as induction of autophagy caused worsening of lung tissue. In contrast, autophagy was exaggerated 6 h after DHCA, and autophagy inhibition attenuated DHCA-mediated lung injury.

文章引用产品列表