Purpose:To investigate the AMPK pathway-mediated effect of alpha-lipoic acid (ALA) on the dorsal root ganglia (DRGs) of rats with diabetic peripheral neuropathy (DPN) and to attempt to elucidate the underlying mechanism.
Methods:Sprague-Dawley rats (n = 15) were randomly divided into three groups. The control group was fed a standard diet, and the other groups were fed a high-carbohydrate/high-fat diet. Diabetes was established by a single streptozotocin (STZ) (30 mg/kg) injection, and control rats were injected with an equal volume of citrate buffer. ALA (60 mg/kg/day) was administered for 12 weeks. The nerve conduction velocity (NCV) of the sciatic nerve was measured. Glutathione (GSH) and malondialdehyde (MDA) concentrations in serum were measured with the thiobarbituric acid method and biochemistry. Pathological changes in the rat DRGs were observed. AMPK, phospho-AMPK (p-AMPK), nuclear factor erythroid-2-related factor 2 (Nrf2), phospho-nuclear factor erythroid-2-related factor 2 (p-Nrf2), heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), Forkhead box O3 (FoxO3a), phospho-Forkhead box O3 (p-FoxO3a), and Bcl-2 interacting mediator of cell death (Bim) expression levels were assessed by immunohistochemistry and western blotting.
Results:ALA improved the motor NCV (MNCV) and sensory NCV (SNCV) of rats with DPN and reduced their mechanical pain threshold. ALA increased serum GSH concentrations and decreased serum MDA concentrations. Additionally, AMPK was activated by ALA. Nrf2, p-Nrf2, HO-1, and NQO1 expression was upregulated, while FoxO3a, p-FoxO3a, and Bim expression was downregulated. ALA reduced oxidative stress and apoptosis in DRG.
Conclusion:ALA alleviates DPN and improves peripheral nerve function. ALA reduces oxidative stress by activating Nrf2 through AMPK and inhibits FoxO3a and Bim thereby reducing neuronal apoptosis.
文章引用产品列表
-
- EK3220
- ELISA试剂盒
Mouse/Rat Insulin Competitive ELISA Kit 检测试剂盒(酶联免疫吸附法)
- ¥2,000.00 – ¥3,400.00