(−)-Syringaresinol suppressed LPS-induced microglia activation via downregulation of NF-κB p65 signaling and interaction with ERβ

  • 类型:
  • 作者:Lanqiu Zhang, Xiaolin Jiang, Jinlu Zhang, Hejun Gao, Lei Yang, Dihua Li, Qi Zhang, Botao Wang, Lihua Cui, Ximo Wang
  • 期刊:INTERNATIONAL IMMUNOPHARMACOLOGY
  • 阅读原文

Albiziae Cortex (AC) is a well-known traditional Chinese medicine with sedative-hypnotic effects and neuroprotective ability. However, the bioactive components of AC responsible for the neuro-protective actitivity remain unknown. Here, we investigated the anti-neuroinflammatory effects of (-)-syringaresinol (SYR) extracted from AC in microglia cells and wild-type mice. As a result, (-)-SYR significantly reduced lipopolysaccharide (LPS)-induced production of interleukin - 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin -1 beta (IL-1β), cycloxygenase-2 (COX-2), and nitric oxide (NO) in BV2 microglia cells. (-)-SYR also significantly reduced M1 marker CD40 expression and increased M2 marker CD206 expression. Moreover, we found that (-)-SYR inhibited LPS-induced NF-κB activation by suppressing the translocation of NF-κB p65 into the nucleus in a concentration-dependent manner. Meanwhile, estrogen receptor β (ERβ) was found to be implied in the anti-inflammatory activity of (-)-SYR in BV2 microglia. In vivo experiments revealed that administration of (-)-SYR in mice significantly reduced microglia/astrocytes activation and mRNA levels of proinflammatory mediators. Taken together, our data indicated that (-)-SYR exerted the anti-neuroinflammatory effects by inhibiting NF-κB activation and modulation of microglia polarization, and via interaction with ERβ. The anti-neuroinflammatory activity of (-)-SYR may provide a new therapeutic avenue for the treatment of brain diseases associated with inflammation.

文章引用产品列表