Oxidized low-density lipoprotein (Ox-LDL)-induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin-3 (Gal-3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal-3 in ox-LDL-mediated endothelial injury remains unclear. This study explores the effects of Gal-3 on ox-LDL-induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal-3, integrin β1, and GTP-RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non-AS control group. CCK8 assay and flow cytometry analysis showed that Gal-3 significantly decreased cell viability and promoted apoptosis in ox-LDL-treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP-RhoA, p-JNK, p-p65, p-IKKα, and p-IKKβ induced by ox-LDL was further enhanced by treatment with Gal-3. Pretreatment with Gal-3 increased expression of inflammatory factors (interleukin [IL]-6, IL-8, and IL-1β), chemokines(CXCL-1 and CCL-2) and adhesion molecules (VCAM-1 and ICAM-1). Furthermore, the promotional effects of Gal-3 on NF-κB activation and inflammatory factors in ox-LDL-treated HUVECs were reversed by the treatments with integrinβ1-siRNA or the JNK inhibitor. We also found that integrinβ1-siRNA decreased the protein expression of GTP-RhoA and p-JNK, while RhoA inhibitor partially reduced the upregulated expression of p-JNK induced by Gal-3. In conclusion, our finding suggests that Gal-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation.
Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation
- 期刊:J Cell Physiol. 2019 Jul;234(7):10990-11000.
- 阅读原文