NADH-Cytochrome B5 reductase 2 suppresses retinal vascular dysfunction through regulation of vascular endothelial growth factor A in diabetic retinopathy

  • 类型:
  • 作者:Jun Chen, Yizhou Sun, Lei Chen, Yun Zhou
  • 期刊:EXPERIMENTAL EYE RESEARCH
  • 阅读原文

Diabetic retinopathy (DR) is a progressive vascular complication of diabetes mellitus (DM) and is related to retinal vascular abnormalities. NADH-Cytochrome B5 Reductase 2 (CBR2) has been implicated in angiogenesis, but the effect of CBR2 on angiogenesis and endothelial cell biological behavior in DR remains unclear. Here, we aimed to explore the effect of CBR2 on retinal vascular dysfunction under diabetic conditions. The histological analyses were performed to explore the effect of CBR2 on pathological change in streptozotocin (STZ)-induced diabetic rat retinas. The effect of CBR2 on endothelial cell function was explored by CCK-8, scratch wound, transwell, tube formation, and immunofluorescence assays in high glucose (HG)-stimulated human retinal microvascular endothelial cells (HRMECs). CBR2 expression was significantly downregulated in DM rat retinas and HG-stimulated HRMECs. Intravitreal injection of CBR2-expressing lentivirus under diabetic conditions reduced retinal angiogenesis, acellular capillary formation, and pericyte loss, along with decreased expression of hypoxia-inducible factor-1α (HIF-1α), cluster of differentiation 31 (CD31), and vascular endothelial growth factor A (VEGFA) in vivo. Moreover, CBR2 overexpression inhibited cell growth and tube formation and led to decreased expression of HIF-1α and VEGFA in HG-induced HRMECs. Interestingly, the repressive effects of CBR2 on cell proliferation, migration, and tube formation under HG conditions were strongly reversed when VEGFA was overexpressed. Overall, the key findings of our study suggested that CBR2 might alleviate retinal vascular dysfunction and abnormal endothelial proliferation during the process of DR by regulating VEGFA, providing a piece of potent evidence for DR therapy.

文章引用产品列表