Knockdown of lncRNA NORAD inhibits the proliferation, inflammation and fibrosis of human mesangial cells under high‑glucose conditions by regulating the miR‑485/NRF1 axis

  • 类型:
  • 作者:Linna Wang, Xiaoying Yuan, Lifeng Lian, Huali Guo, Hongxia Zhang, Minghui Zhang
  • 期刊:Experimental and Therapeutic Medicine
  • 阅读原文

Long non-coding RNAs (lncRNAs) serve major roles in diabetic nephropathy (DN). The present study investigated the regulatory mechanism of lncRNA non-coding RNA activated by DNA damage (NORAD) on DN in vitro. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA NORAD, microRNA-485 (miR-485) and nuclear respiratory factor 1 (NRF1) in the tissues of patients with DN and high-glucose (HG)-induced human mesangial cells (HMCs). The viability of HMCs was determined using an MTT assay. The levels of inflammatory [tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6] and fibrotic [type IV collagen (Col. IV), fibronectin (FN) and plasminogen activator inhibitor 1 (PAI-1)] factors in HMCs were measured by ELISA. The interactions between miR-485 and NORAD/NRF1 were predicted using StarBase and miRDB softwares and confirmed by a dual-luciferase reporter assay. Western blot analysis was utilized to measure NRF1 protein levels. lncRNA NORAD was highly expressed in tissues and HG-induced HMCs. NORAD knockdown suppressed cell viability in HG-induced HMCs. The levels of the inflammatory and fibrotic factors in HG-induced HMCs were inhibited by NORAD knockdown. miR-485 was the direct target of NORAD. NORAD reversed the inhibitory effects of miR-485 on HG-induced HMCs. Furthermore, NRF1 was the target gene of miR-485. Downregulation of miR-485 and upregulation of NRF1 reversed the inhibitory effects of NORAD knockdown on HG-induced HMCs. NORAD knockdown inhibited HG-induced HMC proliferation, inflammation and fibrosis by regulating miR-485/NRF1, providing a possible therapeutic strategy for DN.

文章引用产品列表