The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-κB-mediated inflammation

  • 类型:
  • 作者:Yanhong Pan, Yanping You, Li Sun, Qibang Sui, Liu Liu, Haoliang Yuan, Caiping Chen, Jun Liu, Xiaoan Wen, Liang Dai, Hongbin Sun
  • 期刊:BRITISH JOURNAL OF PHARMACOLOGY
  • 阅读原文

Background and purpose:Psoriasis is a chronic inflammatory skin disease associated with both innate and adaptive immune responses. The stimulator of interferon genes (STING) protein engages in sensing of cytosolic DNA to initiate dsDNA-driven immune responses. In vitro and in vivo anti-psoriasis effects of STING antagonist H-151 were explored.

Experimental approach:We analysed the gene expression profile of STING and related downstream targets in the skin samples of healthy people and psoriasis patients from the GEO database. Cellular inhibitory activity of H-151 on STING pathway was confirmed via qPCR and western blotting. The preventive effect of topical application of H-151 on imiquimod-induced psoriatic mice was examined through histological, immunohistochemical, immunofluorescent, flow cytometric analysis, ELISA Kits and other approaches. Preliminary mechanistic studies were also performed.

Key results:Gene expressions of STING and its downstream target were up-regulated in lesional skin samples from psoriasis patients. Topical administration of H-151 attenuated the skin lesions in imiquimod-induced psoriatic mouse model, while the secretion of pro-inflammatory cytokines (IL-17, IL-23 and IL-6), infiltration of M1 macrophages and differentiation of Th17 cells were significantly suppressed by H-151 treatment. Mechanistically, H-151 inhibited STING/NF-κB signalling in both keratinocytes and immune cells.

Conclusion and implications:H-151 displayed anti-inflammatory activity in both keratinocytes and immune cells, and decreased the severity of psoriatic response in vivo. Inhibition of STING signalling pathway may represent a novel therapeutic approach to psoriasis and related complications.

文章引用产品列表