The design of bioactive scaffolds that can invoke host's own regenerative capabilities and facilitate endogenous tissue repair hold great promise. This study aims to evaluate the potential of stromal cell-derived factor 1 alpha (SDF-1α)-derived peptide and heparin tethered poly(L-lactide-co-ε-caprolactone) (PLCL) copolymers for blood vessel regeneration applications. Amino acid analysis and toluidine blue assays confirm successful conjugation of SDF-1α peptide and heparin with the PLCL copolymers. Assessment of biocompatibility after subcutaneous implantation in rats discloses higher cell infiltration in SDF-1α peptide (SDF-1 group) or SDF-1 peptide and heparin (SDF-1/heparin group) than the control group. SDF-1 and SDF-1/heparin grafts also show more numbers of laminin+ blood vessels, CD90+ stem cells, and alpha smooth muscle actin+ cells than the control group. However, SDF-1 and SDF-1/heparin groups did not significantly differ in terms of blood vessel regeneration and stem cell recruitment. Evaluation of the inflammatory response reveal less numbers of CD68+ macrophages in SDF-1 and SDF-1/heparin groups compared with the control group; whereas three groups show similar numbers of CD206+ macrophages. These results indicate that completely synthetic, cell-free grafts can attract endogenous cells and enhance tissue repair. Bioactive polyesters can be fabricated into different shapes and structures for various tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomater Res Part A: 105A: 262684, 2017.
文章引用产品列表
-
- EK1119
- ELISA试剂盒
Human CXCL12/SDF-1 ELISA Kit检测试剂盒(酶联免疫吸附法)
- ¥1,600.00 – ¥2,650.00