Mycn regulates intestinal development through ribosomal biogenesis in a zebrafish model of Feingold syndrome 1

  • 类型:
  • 作者:Yun-Fei Li, Tao Cheng, Ying-Jie Zhang, Xin-Xin Fu, Jing Mo, Guo-Qin Zhao, Mao-Guang Xue, Ding-Hao Zhuo, Yan-Yi Xing, Ying Huang, Xiao-Zhi Sun, Dan Wang, Xiang Liu, Yang Dong, Xiao-Sheng Zhu, Feng He, Jun Ma, Dong Chen, Xi Jin, Peng-Fei Xu
  • 期刊:PLOS BIOLOGY
  • 阅读原文

Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.

文章引用产品列表