Blocking the IFN-gamma signal in the choroid plexus confers resistance to experimental autoimmune encephalomyelitis

  • 类型:
  • 作者:Yuyin Zheng, Lanxin Hu, Yuwen Yang, Cheng Zheng, Wenzhan Tu, Haiyan Lin, Haotian Wang, Yiwei Jiang, Songhe Jiang, Wu Zheng
  • 期刊:FASEB JOURNAL
  • 阅读原文

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory infiltration and demyelination in the central nervous system (CNS). IFN-gamma (IFN-γ), a critically important immunomodulator, has been widely studied in MS pathology. The confusing and complex effects of IFN-γ in MS patients and rodent models, however, cause us to look more closely at its exact role in MS. In this study, we identified the role of the IFN-γ signaling in the choroid plexus (CP) in the experimental autoimmune encephalomyelitis (EAE) model. We found that the IFN-γ signal was rapidly amplified when CNS immune cell infiltration occurred in the CP during the progressive stage. Furthermore, using two CP-specific knockdown strategies, we demonstrated that blocking the IFN-γ signal via knockdown of IFN-γR1 in the CP could protect mice against EAE pathology, as evidenced by improvements in clinical scores and infiltration. Notably, knocking down IFN-γR1 in the CP reduced the local expression of adhesion molecules and chemokines. This finding suggests that IFN-γ signaling in the CP may participate in the pathological process of EAE by preventing pathological T helper (Th) 17 + cells from infiltrating into the CNS. Finally, we showed that the unbalanced state of IFN-γ signaling between peripheral lymphocytes and the choroid plexus may determine whether IFN-γ has a protective or aggravating effect on EAE pathology. Above all, we discovered that IFN-γR1-mediated IFN-γ signaling in the CP was a vital pathway in the pathological process of EAE.

文章引用产品列表