Ferroptosis, an iron-dependent lipid peroxidation-driven cell death pathway, has been linked to the development of Alzheimer's disease (AD). However, the role of ferroptosis in the pathogenesis of AD remains unclear. Cerebroprotein hydrolysate-I (CH–I) is a mixture of peptides with neurotrophic effects that improves cognitive deficits and reduces amyloid burden. The present study investigated the ferroptosis-induced signalling pathways and the neuroprotective effects of CH–I in the brains of AD transgenic mice. Seven-month-old male APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with intraperitoneal injections of CH–I and saline for 28 days. The Morris water maze test was used to assess cognitive function. CH–I significantly improved cognitive deficits and attenuated beta-amyloid (Aβ) aggregation and tau phosphorylation in the hippocampus of APP/PS1 mice. RNA sequencing revealed that multiple genes and pathways, including ferroptosis-related pathways, were involved in the neuroprotective effects of CH–I. The increased levels of lipid peroxidation, ferrous ions, reactive oxygen species (ROS), and altered expression of ferroptosis-related genes (recombinant solute carrier family 7, member 11 (SLC7A11), spermidine/spermine N1-acetyltransferase 1 (SAT1) and glutathione peroxidase 4 (GPX4)) were significantly alleviated after CH–I treatment. Quantitative real-time PCR and western blotting were performed to investigate the expression of key ferroptosis-related genes and the p53/SAT1/arachidonic acid 15-lipoxygenase (ALOX15) signalling pathway. The p53/SAT1/ALOX15 signalling pathway was found to be involved in mediating ferroptosis, and the activation of this pathway was significantly suppressed in AD by CH–I. CH–I demonstrated neuroprotective effects against AD by attenuating ferroptosis and the p53/SAT1/ALOX15 signalling pathway, thus providing new targets for AD treatment.
文章引用产品列表
-
- GAM007 359 Citations
- 二抗
Goat Anti-Mouse IgG(H+L) HRP 山羊抗小鼠二抗-HRP
- ¥255.00 – ¥350.00